
Debnath Nonlinear PDEs 3e: Chapter 1 - Exercise 28 Page 1 of 5

Exercise 28

Use the Fourier transform to solve the Rossby wave problem in an inviscid β-plane ocean
bounded by walls at y = 0 and y = 1, where y and x represent vertical and horizontal directions.
The fluid is initially at rest and then, at t = 0+, an arbitrary disturbance localized to the vicinity
of x = 0 is applied to generate Rossby waves. This problem satisfies the Rossby wave equation

∂

∂t
[(∇2 − κ2)ψ] + βψx = 0, −∞ < x <∞, 0 ≤ y ≤ 1, t > 0,

with the boundary and initial conditions

ψx(x, y) = 0 for 0 < x <∞, y = 0 and y = 1,

ψ(x, y, t) = ψ0(x, y) at t = 0 for all x and y.

Examine the case for ψ0n(x) = 1
α
√
2

exp{ik0x− (xa )2}.

Solution

For cartesian coordinates in two dimensions, the laplacian operator is

∇2 =
∂2

∂x2
+

∂2

∂y2
.

Substituting this into the PDE gives

∂

∂t

[(
∂2

∂x2
+

∂2

∂y2
− κ2

)
ψ

]
+ βψx = 0.

Distribute the operator in the square brackets.

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2
− κ2ψ

)
+ βψx = 0.

Distribute the t-derivative.
ψxxt + ψyyt − κ2ψt + βψx = 0

The PDE is linear and homogeneous, so the method of separation of variables can be used to
solve it. The boundary conditions at y = 0 and y = 1 suggest a solution of the form:
ψ(x, y, t) = A(x, t)Y (y). Plugging this form into the boundary conditions, we get

ψx(x, 0) = Ax(x, t)Y (0) = 0 → Y (0) = 0 (1)

ψx(x, 1) = Ax(x, t)Y (1) = 0 → Y (1) = 0. (2)

Plugging the form into the PDE, we obtain

AxxtY +AtY
′′ − κ2AtY + βAxY = 0.

Divide both sides by Y and solve for Y ′′/Y .

Y ′′

Y
=
κ2At − βAx −Axxt

At
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The left side is a function of y, and the right side is a function of x and t. As these are
independent variables, the only way both sides can be equal is if they are both a constant. This
constant has to be negative so that the resulting ODE for Y yields a nontrivial solution.

Y ′′

Y
=
κ2At − βAx −Axxt

At
= −λ2

The Rossby wave equation has thus been reduced to an ODE and a PDE in only two variables, x
and t.

Y ′′ = −λ2Y and κ2At − βAx −Axxt = −λ2At
The solution for the ODE can be written in terms of sine and cosine.

Y (y) = C1 cosλy + C2 sinλy

We can use equations (1) and (2) to determine C1 and C2. Applying equation (1), we have

Y (0) = C1 = 0.

Applying equation (2), we have
Y (1) = C2 sinλ = 0.

In order to obtain a nontrivial solution, C2 cannot be zero. Dividing both sides by C2 gives

sinλ = 0,

which means that
λ = nπ,

where n = 1, 2, . . .. These are the eigenvalues, the values of the constant for which the ODE and
boundary conditions are satisfied. The solution to the ODE, also known as the eigenfunctions, are
Yn(y) = sinnπy. Only positive values for n are considered because negative values only change
the sign, not the magnitude, and n = 0 yields the trivial solution. Let’s turn our attention now to
the PDE.

κ2At − βAx −Axxt = −λ2At
Plug in λ = nπ, bring all terms to the right side, and factor At.

Axxt + βAx − [κ2 + (nπ)2]At = 0

Since −∞ < x <∞, we can solve this PDE with the Fourier transform. We define it here as

F{A(x, t)} =A(k, t) =
1√
2π

ˆ ∞
−∞

e−ikxA(x, t) dx,

which means the partial derivatives of A with respect to x and t transform as follows.

F
{
∂nA

∂xn

}
= (ik)nA(k, t)

F
{
∂nA

∂tn

}
=
dnA

dtn

Take the Fourier transform of both sides of the PDE.

(ik)2
dA

dt
+ β(ik)A− [κ2 + (nπ)2]

dA

dt
= 0
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Factor dA/dt, change i2 to −1, and bring the term with A to the other side.

[k2 + κ2 + (nπ)2]
dA

dt
= ikβA

This is a first-order ODE in t that can be solved with separation of variables.

dA

A
=

ikβ

k2 + κ2 + (nπ)2
dt

Integrate both sides.

ln |A| = ikβ

k2 + κ2 + (nπ)2
t+ C3(k)

Exponentiate both sides.

|A| = e
ikβ

k2+κ2+(nπ)2
t+C3(k)

Introduce ± on the right side to remove the absolute value sign on the left.

A(k, t) = ±eC3(k)e
ikβ

k2+κ2+(nπ)2
t

Use a new arbitrary constant.

An(k, t) = Bn(k)e
ikβ

k2+κ2+(nπ)2
t

The solution to the Rossby wave equation is obtained by summing all the eigenfunctions together
for every value of n. This is the principle of linear superposition.

ψ(x, y, t) =
∞∑
n=1

An(x, t)Yn(y)

Our aim now is to determine Bn(k) with the provided initial condition, ψ(x, y, 0) = ψ0(x, y). Take
the Fourier transform of both sides of it.

ψ(x, y, 0) = ψ0(x, y) → F{ψ(x, y, 0)} = F{ψ0(x, y)}
Ψ(k, y, 0) = Ψ0(k, y) (3)

Now take the Fourier transform of ψ(x, y, t).

F{ψ(x, y, t)} = F

{ ∞∑
n=1

An(x, t)Yn(y)

}

The Fourier transform is a linear operator, so it can be brought inside the sum. Also, it only
affects functions dependent on x.

Ψ(k, y, t) =
∞∑
n=1

F {An(x, t)}Yn(y)

Replace F{A} with A.

Ψ(k, y, t) =

∞∑
n=1

An(k, t)Yn(y)
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Substitute the eigenfunctions.

Ψ(k, y, t) =
∞∑
n=1

Bn(k)e
ikβ

k2+κ2+(nπ)2
t
sinnπy

Set t = 0 and use equation (3).

Ψ(k, y, 0) =

∞∑
n=1

Bn(k) sinnπy = Ψ0(k, y)

We can determine Bn(k) by taking advantage of the orthogonality of the sine function. Multiply
both sides by sinmπy, where m is a positive integer like n.

∞∑
n=1

Bn(k) sinnπy sinmπy = Ψ0(k, y) sinmπy

Now integrate both sides with respect to y over the domain it is defined for.

ˆ 1

0

∞∑
n=1

Bn(k) sinnπy sinmπy dy =

ˆ 1

0
Ψ0(k, y) sinmπy dy

Bring the integral inside the sum.

∞∑
n=1

Bn(k)

ˆ 1

0
sinnπy sinmπy dy︸ ︷︷ ︸

= 1
2
δnm

=

ˆ 1

0
Ψ0(k, y) sinmπy dy

The only term in the sum that isn’t zero is the one where n = m, and the integral of sine squared
is known to be 1/2.

1

2
Bn(k) =

ˆ 1

0
Ψ0(k, y) sinnπy dy

Multiply both sides by 2 to solve for Bn(k).

Bn(k) = 2

ˆ 1

0
Ψ0(k, y) sinnπy dy

Plug Bn(k) into the formula for Ψ(k, y, t).

Ψ(k, y, t) =

∞∑
n=1

[
2

ˆ 1

0
Ψ0(k, y

′) sinnπy′ dy′
]
e

ikβ

k2+κ2+(nπ)2
t
sinnπy

Interchange the order of the sum and the integral.

Ψ(k, y, t) =

ˆ 1

0

∞∑
n=1

2 sinnπy′ sinnπy e
ikβ

k2+κ2+(nπ)2
t
Ψ0(k, y

′) dy′

Let

G(k, y, y′, t) =

∞∑
n=1

2 sinnπy′ sinnπy e
ikβ

k2+κ2+(nπ)2
t
.

www.stemjock.com



Debnath Nonlinear PDEs 3e: Chapter 1 - Exercise 28 Page 5 of 5

Then the formula can be expressed compactly like so.

Ψ(k, y, t) =

ˆ 1

0
G(k, y, y′, t)Ψ0(k, y

′) dy′

G(k, y, y′, t) is known as the Green’s function. With Ψ(k, y, t) known, all we have to do now is
take the inverse Fourier transform to find the general solution for ψ(x, y, t).

ψ(x, y, t) =
1√
2π

ˆ ∞
−∞

ˆ 1

0
G(k, y, y′, t)Ψ0(k, y

′)eikx dy′ dk,

where

Ψ0(k, y) =
1√
2π

ˆ ∞
−∞

e−ikxψ0(x, y) dx.

The Special Initial Condition

If

ψ0(x, y) = ψ0n(x) =
1

α
√

2
eik0x−

x2

a2 ,

then taking the Fourier transform of it yields

Ψ0(k, y) =
a

2α
e−

1
4
(k−k0)2 .

Plug this result and the Green’s function into the formula for ψ(x, y, t).

ψ(x, y, t) =
1√
2π

ˆ ∞
−∞

ˆ 1

0

∞∑
n=1

�2 sinnπy′ sinnπy e
ikβ

k2+κ2+(nπ)2
t a

�2α
e−

1
4
(k−k0)2eikx dy′ dk

Pull the constants out in front of the integrals.

ψ(x, y, t) =
a

α
√

2π

∞∑
n=1

sinnπy

ˆ ∞
−∞

e
ikβ

k2+κ2+(nπ)2
t
e−

1
4
(k−k0)2eikx

ˆ 1

0
sinnπy′ dy′ dk

Evaluate the integral in dy′.

ψ(x, y, t) =
a

α
√

2π

∞∑
n=1

sinnπy

ˆ ∞
−∞

e
ikβ

k2+κ2+(nπ)2
t
e−

1
4
(k−k0)2eikx

[
1 + (−1)n+1

nπ

]
dk

Bring the constant out in front and write the exponential functions like so.

ψ(x, y, t) =
a

α
√

2π

∞∑
n=1

[
1 + (−1)n+1

nπ

]
sinnπy

ˆ ∞
−∞

e−
1
4
(k−k0)2ei[kx−ω(k)t] dk,

where ω(k) is the dispersion relation.

ω(k) = − kβ

k2 + κ2 + (nπ)2

The integral is too complicated to be evaluated explicitly, but the method of stationary phase can
be used to determine the leading order behavior of ψ(x, y, t) as t→∞.
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