Exercise 28

Use the Fourier transform to solve the Rossby wave problem in an inviscid β-plane ocean bounded by walls at $y=0$ and $y=1$, where y and x represent vertical and horizontal directions. The fluid is initially at rest and then, at $t=0+$, an arbitrary disturbance localized to the vicinity of $x=0$ is applied to generate Rossby waves. This problem satisfies the Rossby wave equation

$$
\frac{\partial}{\partial t}\left[\left(\nabla^{2}-\kappa^{2}\right) \psi\right]+\beta \psi_{x}=0, \quad-\infty<x<\infty, 0 \leq y \leq 1, t>0
$$

with the boundary and initial conditions

$$
\begin{aligned}
& \psi_{x}(x, y)=0 \quad \text { for } 0<x<\infty, y=0 \text { and } y=1, \\
& \psi(x, y, t)=\psi_{0}(x, y) \quad \text { at } t=0 \text { for all } x \text { and } y .
\end{aligned}
$$

Examine the case for $\psi_{0 n}(x)=\frac{1}{\alpha \sqrt{2}} \exp \left\{i k_{0} x-\left(\frac{x}{a}\right)^{2}\right\}$.

Solution

For cartesian coordinates in two dimensions, the laplacian operator is

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

Substituting this into the PDE gives

$$
\frac{\partial}{\partial t}\left[\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}-\kappa^{2}\right) \psi\right]+\beta \psi_{x}=0 .
$$

Distribute the operator in the square brackets.

$$
\frac{\partial}{\partial t}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}-\kappa^{2} \psi\right)+\beta \psi_{x}=0 .
$$

Distribute the t-derivative.

$$
\psi_{x x t}+\psi_{y y t}-\kappa^{2} \psi_{t}+\beta \psi_{x}=0
$$

The PDE is linear and homogeneous, so the method of separation of variables can be used to solve it. The boundary conditions at $y=0$ and $y=1$ suggest a solution of the form: $\psi(x, y, t)=A(x, t) Y(y)$. Plugging this form into the boundary conditions, we get

$$
\begin{align*}
\psi_{x}(x, 0)=A_{x}(x, t) Y(0)=0 & \rightarrow \quad Y(0)=0 \tag{1}\\
\psi_{x}(x, 1)=A_{x}(x, t) Y(1)=0 & \rightarrow \quad Y(1)=0 . \tag{2}
\end{align*}
$$

Plugging the form into the PDE, we obtain

$$
A_{x x t} Y+A_{t} Y^{\prime \prime}-\kappa^{2} A_{t} Y+\beta A_{x} Y=0
$$

Divide both sides by Y and solve for $Y^{\prime \prime} / Y$.

$$
\frac{Y^{\prime \prime}}{Y}=\frac{\kappa^{2} A_{t}-\beta A_{x}-A_{x x t}}{A_{t}}
$$

The left side is a function of y, and the right side is a function of x and t. As these are independent variables, the only way both sides can be equal is if they are both a constant. This constant has to be negative so that the resulting ODE for Y yields a nontrivial solution.

$$
\frac{Y^{\prime \prime}}{Y}=\frac{\kappa^{2} A_{t}-\beta A_{x}-A_{x x t}}{A_{t}}=-\lambda^{2}
$$

The Rossby wave equation has thus been reduced to an ODE and a PDE in only two variables, x and t.

$$
Y^{\prime \prime}=-\lambda^{2} Y \quad \text { and } \quad \kappa^{2} A_{t}-\beta A_{x}-A_{x x t}=-\lambda^{2} A_{t}
$$

The solution for the ODE can be written in terms of sine and cosine.

$$
Y(y)=C_{1} \cos \lambda y+C_{2} \sin \lambda y
$$

We can use equations (1) and (2) to determine C_{1} and C_{2}. Applying equation (1), we have

$$
Y(0)=C_{1}=0 .
$$

Applying equation (2), we have

$$
Y(1)=C_{2} \sin \lambda=0 .
$$

In order to obtain a nontrivial solution, C_{2} cannot be zero. Dividing both sides by C_{2} gives

$$
\sin \lambda=0,
$$

which means that

$$
\lambda=n \pi,
$$

where $n=1,2, \ldots$. These are the eigenvalues, the values of the constant for which the ODE and boundary conditions are satisfied. The solution to the ODE, also known as the eigenfunctions, are $Y_{n}(y)=\sin n \pi y$. Only positive values for n are considered because negative values only change the sign, not the magnitude, and $n=0$ yields the trivial solution. Let's turn our attention now to the PDE.

$$
\kappa^{2} A_{t}-\beta A_{x}-A_{x x t}=-\lambda^{2} A_{t}
$$

Plug in $\lambda=n \pi$, bring all terms to the right side, and factor A_{t}.

$$
A_{x x t}+\beta A_{x}-\left[\kappa^{2}+(n \pi)^{2}\right] A_{t}=0
$$

Since $-\infty<x<\infty$, we can solve this PDE with the Fourier transform. We define it here as

$$
\mathcal{F}\{A(x, t)\}=\bar{A}(k, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} A(x, t) d x
$$

which means the partial derivatives of A with respect to x and t transform as follows.

$$
\begin{aligned}
& \mathcal{F}\left\{\frac{\partial^{n} A}{\partial x^{n}}\right\}=(i k)^{n} \bar{A}(k, t) \\
& \mathcal{F}\left\{\frac{\partial^{n} A}{\partial t^{n}}\right\}=\frac{d^{n} \bar{A}}{d t^{n}}
\end{aligned}
$$

Take the Fourier transform of both sides of the PDE.

$$
(i k)^{2} \frac{d \bar{A}}{d t}+\beta(i k) \bar{A}-\left[\kappa^{2}+(n \pi)^{2}\right] \frac{d \bar{A}}{d t}=0
$$

Factor $d \bar{A} / d t$, change i^{2} to -1 , and bring the term with \bar{A} to the other side.

$$
\left[k^{2}+\kappa^{2}+(n \pi)^{2}\right] \frac{d \bar{A}}{d t}=i k \beta \bar{A}
$$

This is a first-order ODE in t that can be solved with separation of variables.

$$
\frac{d \bar{A}}{\bar{A}}=\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} d t
$$

Integrate both sides.

$$
\ln |\bar{A}|=\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t+C_{3}(k)
$$

Exponentiate both sides.

$$
|\bar{A}|=e^{\frac{i k \beta}{\bar{k}^{2}+\kappa^{2}+(n \pi)^{2}} t+C_{3}(k)}
$$

Introduce \pm on the right side to remove the absolute value sign on the left.

$$
\bar{A}(k, t)= \pm e^{C_{3}(k)} e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t}
$$

Use a new arbitrary constant.

$$
\bar{A}_{n}(k, t)=B_{n}(k) e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t}
$$

The solution to the Rossby wave equation is obtained by summing all the eigenfunctions together for every value of n. This is the principle of linear superposition.

$$
\psi(x, y, t)=\sum_{n=1}^{\infty} A_{n}(x, t) Y_{n}(y)
$$

Our aim now is to determine $B_{n}(k)$ with the provided initial condition, $\psi(x, y, 0)=\psi_{0}(x, y)$. Take the Fourier transform of both sides of it.

$$
\begin{align*}
\psi(x, y, 0)=\psi_{0}(x, y) \quad \rightarrow \quad \mathcal{F}\{\psi(x, y, 0)\} & =\mathcal{F}\left\{\psi_{0}(x, y)\right\} \\
\Psi(k, y, 0) & =\Psi_{0}(k, y) \tag{3}
\end{align*}
$$

Now take the Fourier transform of $\psi(x, y, t)$.

$$
\mathcal{F}\{\psi(x, y, t)\}=\mathcal{F}\left\{\sum_{n=1}^{\infty} A_{n}(x, t) Y_{n}(y)\right\}
$$

The Fourier transform is a linear operator, so it can be brought inside the sum. Also, it only affects functions dependent on x.

$$
\Psi(k, y, t)=\sum_{n=1}^{\infty} \mathcal{F}\left\{A_{n}(x, t)\right\} Y_{n}(y)
$$

Replace $\mathcal{F}\{A\}$ with \bar{A}.

$$
\Psi(k, y, t)=\sum_{n=1}^{\infty} \bar{A}_{n}(k, t) Y_{n}(y)
$$

Substitute the eigenfunctions.

$$
\Psi(k, y, t)=\sum_{n=1}^{\infty} B_{n}(k) e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t} \sin n \pi y
$$

Set $t=0$ and use equation (3).

$$
\Psi(k, y, 0)=\sum_{n=1}^{\infty} B_{n}(k) \sin n \pi y=\Psi_{0}(k, y)
$$

We can determine $B_{n}(k)$ by taking advantage of the orthogonality of the sine function. Multiply both sides by $\sin m \pi y$, where m is a positive integer like n.

$$
\sum_{n=1}^{\infty} B_{n}(k) \sin n \pi y \sin m \pi y=\Psi_{0}(k, y) \sin m \pi y
$$

Now integrate both sides with respect to y over the domain it is defined for.

$$
\int_{0}^{1} \sum_{n=1}^{\infty} B_{n}(k) \sin n \pi y \sin m \pi y d y=\int_{0}^{1} \Psi_{0}(k, y) \sin m \pi y d y
$$

Bring the integral inside the sum.

$$
\sum_{n=1}^{\infty} B_{n}(k) \underbrace{\int_{0}^{1} \sin n \pi y \sin m \pi y d y}_{=\frac{1}{2} \delta_{n m}}=\int_{0}^{1} \Psi_{0}(k, y) \sin m \pi y d y
$$

The only term in the sum that isn't zero is the one where $n=m$, and the integral of sine squared is known to be $1 / 2$.

$$
\frac{1}{2} B_{n}(k)=\int_{0}^{1} \Psi_{0}(k, y) \sin n \pi y d y
$$

Multiply both sides by 2 to solve for $B_{n}(k)$.

$$
B_{n}(k)=2 \int_{0}^{1} \Psi_{0}(k, y) \sin n \pi y d y
$$

Plug $B_{n}(k)$ into the formula for $\Psi(k, y, t)$.

$$
\Psi(k, y, t)=\sum_{n=1}^{\infty}\left[2 \int_{0}^{1} \Psi_{0}\left(k, y^{\prime}\right) \sin n \pi y^{\prime} d y^{\prime}\right] e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t} \sin n \pi y
$$

Interchange the order of the sum and the integral.

$$
\Psi(k, y, t)=\int_{0}^{1} \sum_{n=1}^{\infty} 2 \sin n \pi y^{\prime} \sin n \pi y e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t} \Psi_{0}\left(k, y^{\prime}\right) d y^{\prime}
$$

Let

$$
G\left(k, y, y^{\prime}, t\right)=\sum_{n=1}^{\infty} 2 \sin n \pi y^{\prime} \sin n \pi y e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t} .
$$

Then the formula can be expressed compactly like so.

$$
\Psi(k, y, t)=\int_{0}^{1} G\left(k, y, y^{\prime}, t\right) \Psi_{0}\left(k, y^{\prime}\right) d y^{\prime}
$$

$G\left(k, y, y^{\prime}, t\right)$ is known as the Green's function. With $\Psi(k, y, t)$ known, all we have to do now is take the inverse Fourier transform to find the general solution for $\psi(x, y, t)$.

$$
\psi(x, y, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \int_{0}^{1} G\left(k, y, y^{\prime}, t\right) \Psi_{0}\left(k, y^{\prime}\right) e^{i k x} d y^{\prime} d k
$$

where

$$
\Psi_{0}(k, y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \psi_{0}(x, y) d x
$$

The Special Initial Condition

If

$$
\psi_{0}(x, y)=\psi_{0 n}(x)=\frac{1}{\alpha \sqrt{2}} e^{i k_{0} x-\frac{x^{2}}{a^{2}}},
$$

then taking the Fourier transform of it yields

$$
\Psi_{0}(k, y)=\frac{a}{2 \alpha} e^{-\frac{1}{4}\left(k-k_{0}\right)^{2}} .
$$

Plug this result and the Green's function into the formula for $\psi(x, y, t)$.

$$
\psi(x, y, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \int_{0}^{1} \sum_{n=1}^{\infty} \not \mathscr{2} \sin n \pi y^{\prime} \sin n \pi y e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t} \frac{a}{\not 2 \alpha} e^{-\frac{1}{4}\left(k-k_{0}\right)^{2}} e^{i k x} d y^{\prime} d k
$$

Pull the constants out in front of the integrals.

$$
\psi(x, y, t)=\frac{a}{\alpha \sqrt{2 \pi}} \sum_{n=1}^{\infty} \sin n \pi y \int_{-\infty}^{\infty} e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t} e^{-\frac{1}{4}\left(k-k_{0}\right)^{2}} e^{i k x} \int_{0}^{1} \sin n \pi y^{\prime} d y^{\prime} d k
$$

Evaluate the integral in $d y^{\prime}$.

$$
\psi(x, y, t)=\frac{a}{\alpha \sqrt{2 \pi}} \sum_{n=1}^{\infty} \sin n \pi y \int_{-\infty}^{\infty} e^{\frac{i k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}} t} e^{-\frac{1}{4}\left(k-k_{0}\right)^{2}} e^{i k x}\left[\frac{1+(-1)^{n+1}}{n \pi}\right] d k
$$

Bring the constant out in front and write the exponential functions like so.

$$
\psi(x, y, t)=\frac{a}{\alpha \sqrt{2 \pi}} \sum_{n=1}^{\infty}\left[\frac{1+(-1)^{n+1}}{n \pi}\right] \sin n \pi y \int_{-\infty}^{\infty} e^{-\frac{1}{4}\left(k-k_{0}\right)^{2}} e^{i[k x-\omega(k) t]} d k
$$

where $\omega(k)$ is the dispersion relation.

$$
\omega(k)=-\frac{k \beta}{k^{2}+\kappa^{2}+(n \pi)^{2}}
$$

The integral is too complicated to be evaluated explicitly, but the method of stationary phase can be used to determine the leading order behavior of $\psi(x, y, t)$ as $t \rightarrow \infty$.

